
Object Detection Computer Vision Project Report

December 2020

1 Objective and Significance

Object detection is an increasingly popular area of research. It is one of the most challenging aspects

of computer vision and recently, the use of deep learning in this field has led to great advances [22]. In

object detection, the goal is to create a system that can both classify objects from specified categories in

an image, as well as identify a location for such instances of the objects found. Typically, the predicted

location is depicted as a bounding box that encloses the object. Object detection algorithms are used in

many applications. For instance, they may be used for security and video surveillance, autonomous driving,

robotic vision, human-computer interaction, medical imaging, and much more [22, 24]. For example, Chen

used object detection for car license plate detection [4], while Lan et al used object detection to detect

pedestrians [19], and Al-Masni et al used it for detection and classification of masses in women’s breasts [24].

One main problem with current deep learning object detection algorithms is that the majority of them

are slow during inference and as such cannot run in real-time while retaining high accuracy [3]. However,

one notable algorithm that is both accurate and capable of real-time inference is YOLO: You Only Look

Once [30, 28, 29, 3]. In our project, we set out to recreate the YOLO v3 algorithm from scratch using the

deep learning framework PyTorch. After implementing it, we tested our object detector on the MS COCO

data set, [21], and evaluated its success.

We had several motivations for this project. One was that the topic seems important because of the

wide variety of applications it can be used for (as can be seen by the examples mentioned previously). And

specifically in regards to applications, all of our team members are interested in robotics or autonomous

vehicles which are both fields where object detection is extremely important. Also, considering the field of

object detection, YOLO is very exciting because of how fast it can perform inference. It would be great to

see this in practice.

During the project, we were able to successfully recreate many data augmentation techniques such as

photometric and geometric distortions, cutmix, and mosaic– all of which were used in YOLO v4 [3]. We

were also able to implement the YOLO v3 architecture, load pre-trained weights, and make detections on

the COCO test set. Lastly, we attempted to write a loss function and training loop and train a model on two

different data sets. Although the pre-trained weights performed well on the handful of images we visualized

results on, they performed relatively poorly when looking at the statistics of Mean Average Precision (AP)

and Recall (AR) for the test set. We performed worse than YOLO v3 and the 10 other models we had data

for in almost all categories of AP and achieved an overall Mean Average Precision of only 20.3%. The models

we trained did even poorer and had an overall Mean Average Precision of 0% indicating that the model was

unable to learn anything.

1

Nehar Poddar, Carter Ithier, Alexander Gear

poddar.ne@northeastern.edu, ithier.c@northeastern.edu, gear.a@northeastern.edu

2 Background

2.1 Previous Work in Object Detection

Object detection is one of the areas of computer vision that is growing and developing very rapidly (mostly

due to deep learning). From time to time new algorithms and models are developed which keep outperforming

previous ones. Since the creation of AlexNet in 2012, which was a type of Deep Convolutional Neural Network

(DCNN) for object classification that broke many records, deep learning models have become the main source

of improvement for object detection [22]. There are two main types of object detection models: one where

you try to identify an instance of a specific object (such as a specific person’s face) and the other where you

try to detect instances of previously unseen objects of specific categories (such as dogs or cars) [22].

Image classification involves predicting and assigning a class label to one object in an image, whereas

object localization involves identifying the location of, and drawing a bounding box around, one or more

objects in an image. Object detection is more challenging and combines these two tasks by drawing a

bounding box around each object of interest in the image and then assigning them a class label. Together,

all of these problems are referred to as object recognition. Today, there exists a wide range of pre-trained

models for object detection such as YOLO, RCNN, Fast RCNN, Mask RCNN, and Multibox [32]. Therefore,

it is becoming increasingly fast and easy to detect most objects in a video or image.

There are several standards for evaluating the performance of an image classification model. One is

the mean classification error across the predicted class labels. Another compares the distance between the

true and predicted bounding box for the expected class. Yet another frequently used evaluation method is

computing the precision and recall across each of the best matching bounding boxes for the known objects

in the image. These metrics are discussed in more detail in Section 3.3 [6, 10].

Object Detection models are split into two main categories: region-based frameworks (also called two-

stage frameworks) and unified frameworks (also called one-stage frameworks) [22]. In two-stage frameworks,

region proposals are made for an image that are independent of object categories, features are taken from

the proposed regions, and then classifiers that are specific to different categories are used to identify if there

are any objects of interest in the proposed region [22]. The primary examples of two-stage frameworks are

the R-CNN family.

R-CNN Model Family (Region-Based Convolutional Neural Network) includes R-CNN, Fast R-CNN,

Faster R-CNN, and Mask R-CNN which are designed for object localization and object recognition [15].

The R-CNN model is comprised of a region proposal, a feature extractor, and a classifier. It generates and

extracts category independent region proposals, extracts features from each candidate region, and classifies

features as one of the known classes [13].

The Fast R-CNN model trains in multiple stages. It starts by taking the image and passing it through

a deep convolutional neural network. It then interprets the CNN as a fully connected layer and splits the

model into two outputs, class prediction and linear bounding box. This process is then repeated multiple

times for each region of interest in a given image. The model is significantly faster to train and in making

predictions than R-CNN [12].

Faster R-CNN has an architecture called a Region Proposal Network, or RPN, that is designed to both

propose and refine region proposals as part of the training process. The regions are then used in concert

with a Fast R-CNN model in a single model design. These improvements both reduce the number of region

proposals and accelerate the test-time operation of the model to near real-time with what was (at the time)

state-of-the-art performance [31].

2

The most recent model in the R-CNN family is Mask R-CNN which extends Faster R-CNN, allowing for

predictions that not only detect objects but also make instance segmentation predictions [14].

In one-stage frameworks, there is no region proposal step. Instead, there is a single pipeline that directly

calculates bounding box offsets and class probabilities [22]. Notable examples of one-stage frameworks include

OverFeat which pioneered one-stage object detectors by combining feature extraction, location regression,

and region classification in the same CNN [33]. YOLO, described in the next section, is also an example of

a unified framework. Other examples include CornerNet, which at the time of its publication outperformed

previous unified frameworks (although the inference time was extremely slow in comparison), and Single Shot

Detector (SDD) which borrows ideas from Region Proposal Networks and multiscale convolutional features

but does everything within one network [22].

2.2 YOLO

2.2.1 YOLO v1

Unlike other object detection models that rely on classifiers and region proposals, YOLO is relatively unique

in the sense that it is a single convolutional network that treats object detection as a regression problem

[30]. It does this by dividing the given input image into an S × S grid and allowing each cell to predict a

fixed number of bounding boxes for an object. The grid cell where the center of the object lies is responsible

for the detection of that single object. In addition to bounding boxes, the associated class probabilities are

also predicted [30].

Every bounding box prediction consists of five elements: x, y, w, h and a confidence score where (x, y)

are the coordinates of the center of the object in the input image (offset relative to the grid it lies in) and

w and h are the width and height of the object, respectively. The confidence score is the probability that

the box contains the object and tells us how accurate the model thinks the predicted bounding box is. Also

predicted is the conditional class probability which is the probability that the detected object belongs to

a particular class (one probability per category for each cell) given that the grid cell contains an object

[30]. The above description explains the basics of YOLO v1, however, YOLO has greatly evolved since its

inception. Its further iterations are described in the following sections.

2.2.2 YOLO v2

YOLO v1 had many shortcomings, such as low localization accuracy and difficulty in recognizing small

objects. YOLO v2 became faster and more accurate. It added batch normalization, chose a higher resolution

classifier, and also applied Faster R-CNN’s idea of anchor boxes to its bounding box regression. It determines

the anchor box sizes by using k-means clustering on the training set bounding boxes to better align with

object shapes. To solve the problem of model instability after the addition of anchor boxes, YOLO v2

constrains the object center regression predictions by using a logistic activation. Another improvement was

the addition of DarkNet-19 for feature extraction. DarkNet-19 was inspired by “Network in Network” [20],

GooLeNet’s bottleneck structure, and the introduction of multi-scale training which results in different input

resolutions at different periods of training. Lastly, to improve the detection of small objects, YOLO v2 added

a pass-through layer to merge features from an early layer. One way that it departed from its predecessor is

that YOLO v2 experimented with a version that is trained on a 9000 class hierarchical data set, which also

represents an early attempt at multi-label classification in an object detector [28].

3

Figure 1: Breakdown by backbone and detector of examples of Bag of Freebies and Bag of Specials from

YOLO v4 [3].

2.2.3 YOLO v3

YOLO v3 only made a few improvements from YOLO v2. Like YOLO v2, v3 uses anchor boxes whose priors

are determined using k-means clustering. It continues to use logistic activation to constrain the bounding

box object center and predicts the center, height, width, and objectness score for each bounding box. It uses

multi-label classification as before. YOLO v3 predicts bounding boxes at three different scales and one of the

biggest improvements it made was the use of a new feature extractor called Darknet-53. YOLO v3 got rid

of v2’s pass-through layers and fully embraced FPN’s multi-scale predictions design. YOLO v3 performed

similarly to other SSD type detectors, but was 3x faster and, compared to v2, did very well on small object

detections (although slightly worse on medium and larger objects). Although decent at predicting bounding

boxes, it still had trouble perfectly aligning them with the object [29].

2.2.4 YOLO v4

In experiments, YOLO v4 obtained an AP value of 43.5% on the MS COCO dataset and obtained a speed

of 65 FPS on the Tesla V100, beating the fastest and most accurate detectors. When compared to YOLO

v3, the average precision increased by 10% and frames per second by 12% [3]. The authors used several

new features to make their design suitable for efficient training and detection such as weighted residual

connections, cross-stage partial connections (a new backbone that can enhance the learning capability of a

CNN), cross mini-batch normalization, self adversarial training (a new data augmentation technique that

operates in two forward backward stages), mosaic data augmentation, DropBlock regularization (a better

regularization method for CNN), and CIoU loss. The authors of the YOLO v4 paper distinguish the methods

that are used to improve the object detector’s accuracy and achieve a fast operating-speed neural network

into two categories. One category is Bag of freebies (BoF): methods that can make the object detector achieve

better accuracy without increasing the inference cost. BoF methods only change the training strategy and

not the architecture. An example of BoF is data augmentation, which increases the generalization ability of

the model. Minor changes can be made to make photometric distortions such as changing the brightness,

saturation or contrast, and adding noise. Geometric distortions can also be made such aas rotation or

cropping. The second category is Bag of specials (BoS). BoS are plugin modules and post-processing methods

4

that only increase the inference cost by a small amount but can significantly improve the accuracy of object

detection [3]. A more detailed list of BoF and BoS can be seen in Figure 1.

2.3 Our Project Contribution

As can be seen in the following Methodology section, our methodology was nearly identical to YOLO v3.

Our goal for the project was simply to recreate the YOLO v3 paper and see if we could achieve similar

results. However, we still feel that this was an interesting project because of the various applications of

object detection and the inference speed we obtained despite the fact that our code was written purely in

Python. This report also demonstrates how difficult it can be to recreate papers and how papers could be

improved to include more information that would aid in their replicating their results.

3 Methodology

3.1 Data set

Two different data sets were used: COCO and a small data set with nuts that was obtained from Tony607’s

Github repo [11]. The following two sections describe each data set.

3.1.1 COCO

For this project, we trained and evaluated on the Microsoft Common Objects COntext (MS COCO) data

set [21]. The entire COCO data set has 2.5 million object instances labeled across 328k images and contains

91 different object categories. COCO is readily available for download and consists of both images and

their corresponding annotations [5]. The annotations contain information like the image dimensions, object

categories and corresponding IDs, image and annotation IDs, and points consisting of the object segmen-

tation and bounding box. YOLO does not make instance segmentation predictions so we did not use the

segmentation information in the annotations; we only used the bounding box information.

Because we had limited time to train and difficulty storing and transferring that many images (which did

not include the number of images we wanted to augment) we decided to use a subset of the data. We decided

to use only 10 categories from the 2017 train and 2017 test COCO data sets: person, dog, bottle, cup, fork,

bowl, dining table, TV, laptop, and book. We picked categories that had large numbers of pictures, varying

difficulty levels in detection, and were common-place objects so we could test our model on pictures taken

in our homes.

There were four different subsets of the COCO data set that we used. The number of overall images,

annotations, and categories can be seen in Table 1, the number of images by category can be seen in Table

2, and the number of annotations by category can be seen in Table 3. In the tables, the second column

is “Reduced COCO.” This subset of the COCO data set was obtained by separating out all pictures and

annotations that had our categories of interest. There was an overwhelming number of annotations with

people that led to class imbalance so we removed all images from this subset that only contained people.

The “Subset of Reduced COCO” consists of a random selection of 1000 photos taken from the previously

mentioned data set. This was done because we were having difficulties in training the network and we were

rushed for time so in order to be able to iterate quickly we decided to have a smaller set to train on. The

“Augmented Data Set” consists of the “Reduced COCO” subset along with an additional 28,068 augmented

images that were produced following the methodology described in Section 3.2.1. Lastly, the “Test Set”

5

Reduced COCO Subset of Reduced COCO Augmented Data Set Test Set

Images 32,579 1,000 60, 647 3,450

Annotations 172,733 5,235 332,082 160,84

Categories 10 10 10 10

Table 1: A break down of the number of images, annotations, and categories in the various train and test

sets we created that utilized COCO.

Category Reduced COCO Subset of Reduced COCO Augmented Data Set Test Set

person 15,243 451 31,286 2,693

dog 4,385 133 13,365 177

bottle 8,501 272 15,474 379

cup 9,189 299 19,165 390

fork 3,555 101 11,249 155

bowl 7,111 236 15,655 314

dining table 11,837 353 25,326 501

TV 4,561 141 13,349 207

laptop 3,524 112 13,832 183

book 5,332 164 12,228 230

Table 2: The number of images that each category had in the various training and test sets we created from

COCO.

consists of the 2017 COCO Validation Set (called Val2017 on the COCO website [5]), but which has been

filtered to only have images and annotations from our classes of interest.

We chose COCO for several reasons. Firstly, it is one of the standard benchmark data sets used to

evaluate object detection models. This allowed us to easily compare our results to those reported by other

papers (including YOLO v2, v3, and v4). Also, because it consists of many common objects such as dogs,

eating utensils, laptops, etc, we would be able to easily perform inference on new photos that we take with

such objects in them. Lastly, there exists a Python COCO API [7], which allowed us to easily visualize

prediction results and evaluate the performance of our model.

3.1.2 Nuts Data Set

The fruits nuts segmentation data set is a data set used in several online tutorials to train object detection

models such as Facebook Detectron 2 [35]. It can be found on Github here [11]. It consists of 18 images and

3 classes: hazelnut, fig and date. A breakdown of the number of images and annotations overall can be seen

in Table 4 and the breakdown by category can be seen in Table 5. We used it to test our model because it is

a small data set, which made it was much faster to train than our COCO data set. It was helpful to check

and debug our model before training it on the Discovery cluster for our large data set.

6

Category Reduced COCO Subset of Reduced COCO Augmented Data Set Test Set

person 52,257 1,533 88,245 10,777

dog 5,500 165 17,014 218

bottle 24,070 737 36,283 1,013

cup 20,574 642 37,428 895

fork 5,474 150 15,110 115

bowl 14,323 435 28,272 623

dining table 15,695 443 33,510 695

TV 5,803 167 17,660 288

laptop 4,960 183 18,853 231

book 24,077 780 39,707 1,129

Table 3: The number of annotations for each category in the various training and test sets we created using

COCO.

Number of Annotations 164

Number of Images 18

Number of Categories 3

Table 4: Number of annotations, images, and categories in the fruit nuts data set.

Hazelnut Fig Date

Number of Images 17 16 17

Annotations 53 40 71

Table 5: Breakdown by category of the number of images and annotations for the fruit nuts data set.

7

3.2 Methodology

3.2.1 Data Augmentation and Pre-processing

Before being fed into the neural network, all images from our data sets were resized to be 416 × 416, and

the pixel RGB values were normalized to lie in between 0 and 1.

A total of 28,068 images were augmented from the “Reduced COCO” data set resulting in the size of

our data set nearly doubling. The types of augmentations (which are described in the following sections)

were standard types such as photometric and geometric distortions as well as two less commonly used

ones described in the YOLO v4 paper– cutmix and mosaic [3]. All code was done in Python and utilized

the computer vision library OpenCV. We attempted to create and maintain class balance across all 10

categories in the final augmented data set. We did this by picking pictures to augment based on a probability

weight distribution we determined. The weights in this distribution summed to one and pictures with fewer

annotations had more weight (and thus were more likely to get picked) than pictures with more annotations.

Included in the weight was a measure of how frequent a category was in an image. For instance, in many

images with people, there were multiple people in one image whereas for dining tables there was typically only

one dining table per image. Thus, categories with a smaller frequency per image had higher weights. This

still was not a perfect solution because each image could have multiple annotations of different categories

per image which meant that augmenting images for a class like TV could also result in more annotations of

people if there are people in the image with the TV. However, as can be seen in Table 3 we were able to get

the number of annotations within six times of each other.

Industry Standard Augmentations Based on the description of common data augmentation practices

in [29] and [34], we created an augmentation pipeline implementing such features. We initially tried to use a

Python library called Albumentations to augment our data because it had all of the features that we wanted

in our pipeline [1]. However, we found that when generating over a few hundred photos, the library would

start having extremely inaccurate bounding boxes for the augmented image. Examples of such cases can be

seen in the two right-most images in Figure 2. Another problem we found with bounding boxes was that

the library created the new bounding box based on the original. However, results were much more accurate

if you transformed the mask of the image (because the COCO data set has segmentation information) and

then recalculated the new bounding box based on that transformed mask. As a result, we were unable to

use any augmentations from the library that could result in different bounding boxes in the output image.

To remedy this, we created our own pipeline and made the new bounding boxes it created based on the

mask of the transformed image. In our pipeline, we used some features from Albumentations that did not

affect bounding boxes such as FancyPCA (based on Krizhevsky’s paper [18]), color jitter (which randomly

changes the brightness, contrast, and saturation of an image), blur, the addition of gaussian noise, and a

method that changes the hue, saturation, and value of the input image. The features that we implemented

ourselves were resize, horizontal flip, a random crop and re-scaling (which is required to contain at least one

bounding box in the new image), rotation, and Cut Out. Cut Out was introduced by DeVries et al and is

when you randomly replace small square sections in an image with all black [8]. In our pipeline, one of Fancy

PCA, color jitter, or hue saturation value change were applied with 50% probability. Blur and gaussian noise

were applied with 30% probability. Horizontal flip was applied with 50% probability, Cut Out was limited

to a maximum of 3 squares to be converted to black and was applied with 33% probability, random crop and

re-scaling were applied with 20% probability, and a rotation between −15◦ and +15◦ was applied with 15%

8

Figure 2: Ground truth bounding boxes produced by the Albumentations data augmentation library were

sometimes correct such as in the left-most image, but others were very inaccurate such as the following two

images.

probability. Pictures were only chosen to be augmented if the segmentation masks for each object instance

were at least 300 square pixels in area.

Cutmix and Mosaic Augmentations The other two types of data augmentation we performed were

cutmix and mosaic [36, 3]. In both of these methods, multiple images are cropped and combined into one

new image. For cutmix, two images are combined and for mosaic it is four. Both of these methods were

used in the YOLO v4 paper in which the authors argue that such methods allow for the network to learn

representations of objects “outside of their normal context” which aids in training [3]. An example of outputs

for each algorithm can be seen in Figures 12 and 13.

The algorithm we developed that implements cutmix can be seen in Algorithm 1. Lines 1-5 initialize

several variables for the algorithm. The variable size is the dimension of the input and output image. In

our case, we had scaled all of our data to be 416×416. The variables min area and min intersect percentage

are parameters that may need to be fine-tuned further in the future. They specify what area an instance

must have to be counted in the annotations and the minimum allowed percentage that the bounding box

area for the cutmix image should have compared to the original bounding box in the inputted image. We

chose these values after much experimentation in which we visualized bounding boxes on the images output

by our cutmix and mosaic algorithms and determined whether or not the bounding box seemed reasonable

for a network to learn and should be included or excluded. Additionally, the variables min percentage

and max percentage, which control the minimum and maximum width of the original image in the new

cutmix image, were chosen somewhat arbitrarily until we got results that we thought looked similar to the

augmentations shown in [3]. As such, there is room for changing these values.

Next, we initialize the cutmix image we are going to return in line 6. In lines 7-10 we check that all areas

for each instance in the original objects are greater than the minimum area specified in line 4. If they are,

we continue with the algorithm, otherwise, we return None to indicate failure. In lines 11 to 14 we calculate

how many rows and columns the left side of the cutmix image should have as well as the right side. Then

in lines 15-20 we obtain ROIs (Regions of Interest) for the left and right-hand side of the cutmix image and

copy the pixels of those ROIs to the appropriate portions of the cutmix image to be returned. In order

9

to obtain the ROIs, we randomly sample points near at least one bounding box that exists in the original

image. This is done inside the “determine roi” function. In the function, we treat that point as one corner

of a rectangle of the appropriate dimensions. If this rectangle ends up containing at least one bounding box,

then the rectangle rows and columns are returned. Otherwise, a new point is sampled and the process is

repeated until success.

In lines 21-37, new annotations are created for the cutmix image. This is done by creating a mask for

each object instance and cropping and pasting the appropriate ROIs of the mask based on what happened for

the real images. We are able to create the masks because the original COCO data set contains segmentation

information for each object instance. Next, new bounding boxes are determined from the mask and if they

are above the minimum area and consist of a large enough percentage of the original bounding box, then

the annotation is saved. Once this is done, if the length of new annotations is greater than 0 then the new

cutmix image and annotations are returned, otherwise, None is returned to indicate failure.

The algorithm we developed for mosaic is almost identical to Algorithm 1, except y1 and y2 are different

values that sum to size and the overall process is done for four images and their respective Regions of Interest

(ROI) instead of two. In the mosaic algorithm, y1 and y2 are calculated in the same manner as x1 and x2

(they are within the range min percentage × size and max percentage × size).

Post-Processing In earlier iterations of creating the data set, we had an extremely unbalanced data set

due to the number of annotations that involved the person class. This resulted in some annotation numbers

being 52 times that of less frequent classes. To combat this, we wrote a post-processing script that would

slowly eliminate images in the data set one at a time until certain criteria were met in order to create a

more balanced data set. Pseudo-code for this algorithm can be seen in Algorithm 2. In the algorithm, we

considered the data set to be balanced if the number of annotations for each class is within ten times each

other, and otherwise, it is considered not balanced. We run the algorithm until either the data set is balanced

or a maximum number of iterations has elapsed (which we specify as four times the number of images in the

data set). We repeatedly get a list of category ids that are not balanced (because their number of annotations

are too large) and then get all of the image ids that contain at least one of the category ids found in the

previous step. Then annotations are obtained for one of the image ids that are randomly sampled and it

is determined which category id has the maximum number of annotations in that image. If the maximum

category id found is one that belongs to the list of category ids that have too many annotations, then this

image is removed from the data set. We found that it was important to only remove the image based on

the maximum category id. That way, we were more likely to avoid removing images that may have other

annotations in it whose numbers were too small.

3.2.2 Architecture

YOLO v3 works by splitting each 416× 416 input image in a batch into an S × S grid where S can take on

three different values (S1 = 13, S2 = 26, and S3 = 52). B = 3 anchor boxes (priors) are chosen for each grid

cell using k-means clustering on the dimensions of the training set’s bounding boxes.

For YOLO v3, k = 9 (chosen arbitrarily) [29], and the clusters are then divided up evenly among three

different scales (described in the following paragraph) leading to three bounding box predictions for each

cell at each of three different scales.

Predictions are made for each anchor box as sets of four coordinates to indicate the x and y position of

the center of the predicted object (relative to the top left corner of the object’s respective grid cell and passed

10

Algorithm 1: Our Cutmix Algorithm

Input: Two images and corresponding annotations

Result: Two Images Merged into One Image with Corresponding Annotations

1 size = 416;

2 min percentage = 0.25;

3 max percentage = 0.75;

4 min area = 200;

5 min intersect percentage = 0.2

6 cutmix img ← initialize size × size black image;

7 img1 areas ← areas for each object instance in image 1;

8 img2 areas ← areas for each object instance in image 2;

9 if min(img1 areas) < min area or min(img2 areas) < min area then

10 return None;

11 min cols = min percentage * size ;

12 max cols = max percentage * size + 1;

13 x1 ← random integer between min cols and max cols;

14 x2 = size - x1;

15 y1 = y2 = size;

16 left roi rows, left roicols = determine roi(x1, y1, size, img1 anns);

17 left roi img = get roi(img1, left roi rows, left roi cols);

18 cutmix img[0:y1, 0:x1] = left roi img;

19 right roi rows, right roi cols = determine roi(x2, y2, size, img2 anns);

20 right roi img = get roi(img2, right roi rows, right roi cols);

21 cutmix img[0:y2, x1:] = right roi img;

22 for each annotation for img 1 do

23 cutmix mask ← initialize size × size black image;

24 mask ← create mask for annotation ;

25 left roi mask = get roi(mask, left roi row, left roi cols);

26 cutmix mask[0:y1, 0:x1] = left roi mask;

27 bbox ← get bounding box from cutmix mask ;

28 intersect percentage = bbox area / original bbox area;

29 if bbox area > min area and intersect percentage > min intersect percentage then

30 save new bbox to annotations;

31 end

32 for each annotation for img 2 do

33 cutmix mask ← initialize size × size black image;

34 mask ← create mask for annotation ;

35 right roi mask = get roi(mask, right roi row, right roi cols);

36 cutmix mask[0:y2, x1:] = right roi mask;

37 bbox ← get bounding box from cutmix mask ;

38 intersect percentage = bbox area / original bbox area;

39 if bbox area > min area and intersect percentage > min intersect percentage then

40 save new bbox to annotations;

41 end

42 if number of new annotations > 0 then

43 return cutmix img and new annotations

44 else

45 return None

11

Algorithm 2: Creating a balanced data set

Result: A balanced data set

steps = 0;

max steps = 4 * number of images;

while not balanced and steps < max steps do

cat ids ← category ids that are not balanced;

img ids ← image ids that contain at least one of the cat ids;

id ← a random id from img ids;

anns ← annotations for id;

max id ← category id that appears the most in anns;

if max id in cat ids then

Remove image from data set;

Update annotation by category numbers;

step++;

end

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bh = phe
tn

Figure 3: Predictions tx, ty, tw, th are converted into final bounding box coordinates bx, by, bw, bh via these

equations where pw and ph are the width and height of the priors and cx and cy are the grid offsets [29].

through a sigmoid function to obtain a value between 0 and 1) and the height and width of the bounding

box surrounding the object.

In addition to the coordinates, an ‘objectness score’ or confidence is predicted specifying the probability

that the anchor box in question in fact contains an object and is calculated as Pr(object) × IoU(bounding

box, object) [28].

Furthermore, C independent logistic classifiers, one for each category (or class) in the data set, calculate

the probability that the predicted object belongs to that category. In the original YOLO v3 paper C = 80.

We initially attempted to make this a parameter that we could set at run time to try C = 10. Unfortunately,

this caused errors in the program due to mismatching tensor sizes, which would require us to experiment

with changing other parameters of the convolutional layers and in the interest of time, we decided to stick

with C = 80.

The objective function is optimized by the mean squared error between the predicted vector and the

ground truth vector (see Figure 7 for details). To improve the detection of objects of different sizes, the

network divides the image up into cells at three different scales to predict small, medium, and large objects

and then concatenates predictions at the different scales together for the final output leading to a final

prediction tensor of [(S1 × S1) + (S2 × S2) + (S3 × S3)]× [B × (4 + 1 + C)] [29].

In total YOLO v3 uses 106 layers in its network, including convolutional layers, upsampling layers, skip

connections, and detection layers (see Figure 5 and Figure 6 for details). We constructed the network using

PyTorch’s nn.ModuleList() class and appended layers to it one by one. While all the YOLO guides that we

12

Figure 4: Bounding boxes with dimension priors and location prediction taken from [29].

Figure 5: Darknet-53 network taken from [29].

used for assistance built their networks from a config file, we decided that both in order to differentiate our

code and to understand the network better we would build the network manually [25, 16]. Although this

was tedious and led to less clean/modular code, it definitely helped clarify and make obvious the structure

of the network.

Using scales of 13×13, 26×26, and 52×52, the output tensor of the final layer for an image is 10647×85.

To reduce the total number of detections in the final output we used a utility function to prune the output

to a smaller number of “true detections”. This is accomplished, first by removing any detections whose

objectness score is less than 0.5 and then by using non-maximum suppression, where if two detections are of

the same class and have an IOU of more than 0.4, we remove the detection with the lower objectness score.

3.2.3 Loss Functions

We found that the loss function discussed in YOLO v3 was described in too little detail in the paper for

us to fully understand and implement it. As a result, we decided to use the loss function from YOLO v1.

13

Figure 6: Yolo 3 architecture taken from [17].

MSE = λcoord

S2

∑

i=0

B
∑

j=0

✶
obj
ij

[

(xi − x̂i)
2 + (yi − ŷi)

2
]

+λcoord

S2

∑

i=0

B
∑

j=0

✶
obj
ij

[

(
√
wi −

√

ŵi)
2 + (

√

hi −
√

ĥi)
2

]

+

S2

∑

i=0

B
∑

j=0

✶
obj
ij (Ci − Ĉi)

2

+λnoobj

S2

∑

i=0

B
∑

j=0

✶
noobj
i (Ci − Ĉi)

2

+

S2

∑

i=0

✶
obj
ij

∑

c∈classes

(pi(c)− p̂i(c))
2

Figure 7: Multi-part Mean Squared Error taken from [30]. λcoord and λnoobj are parameters used to increase

the loss from bounding box predictions and decrease the loss from confidence predictions for boxes with no

objects. ✶obj
i means an object appears in cell i and ✶

obj
ij means that cell i’s jth bounding box predictor is

responsible for the prediction.

14

A slightly modified version of this loss function described in [30] can be seen in Figure 7. As can be seen,

the loss consists of a series of sums of square errors for different terms. In the equation, ✶ij is an indicator

variable that is 1 when the jth bounding box predictor (of which there are 3 total for each scale trained

at) in cell i is “responsible” for the prediction and 0 otherwise. The paper specifies that a bounding box

is “responsible” for the prediction if it has the highest IOU of any of the predictors in that particular grid

cell. Because it is an indicator function, the loss for most terms only penalizes errors for some bounding box

priors, not all. However, for the no object loss, we have ✶i so we are penalizing across all predictors. In the

paper, the authors use λcoord = 5 and λnoobj = 0.5 and we did the same. The authors explain that they

do this to increase the loss from bounding box predictions and decrease the loss from confidence predictions

for grid cells with no objects (because most grid cells will not have an object). Other things that should

be mentioned is that the bounding box coordinates are normalized to lie between 0 and 1 (x and y are

normalized by grid cell location offset and w and h are normalized by image width and height). Also, note

that the square root of width and height are taken in the equation to make sure that small differences in

large bounding box predictions matter less than in small bounding boxes.

3.2.4 K-means to Pick Anchor Box Priors

YOLO v2 introduced the concept of using anchor box priors in order to predict bounding boxes which

resulted in an increase in recall performance [28]. Rather than selecting the priors by hand, the authors used

k-means on the bounding boxes in the training set. To maximize good IOU scores and discourage larger

boxes from generating more error than smaller boxes, Redmon et al used the following distance metric and

found the best trade-off in error and complexity by using 9 anchor boxes:

d(box, centroid) = 1− IOU(box, centroid) (1)

To follow in these footsteps, we ran k-means on our augmented data set with k = 9. The points consisted

of (width, height) and when doing the IOU calculation, we considered the center of all rectangles for those

two attributes to be the same. Our stopping criteria was whether no assignment changes were made or

whether 1000 steps had elapsed. We found in our experiment that it did not converge in 1000 steps. To

increase our chances of finding better clusters, we used the k-means++ algorithm as the method for choosing

our initial cluster centroids. A visualization of the results can be seen in Figure 8. The red points are the

different bounding boxes from the training set (which was the augmented data) and the black x’s are the

centroids that were found. These centroids, (width, height), were: (122, 109), (31, 76), (206, 313), (375,

354), (250, 149), (79, 48), (119, 245), (58, 154), (18, 27). We did not end up using these priors in our final

model because we did not train on the augmented data set. Instead, we used the ones proposed in the YOLO

v3 paper: (10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116, 90), (156, 198), (373, 326) [29].

3.2.5 Training Set-Up

Our training loop used Adam optimization with a weight decay of 1e-4. We initially used a learning rate

scheduler to gradually reduce the learning rate over time, but found that our settings for which epochs the

learning rate should decrease did not work well. As a result, we experimented with the learning rate and

would change it manually if we saw that the loss was either increasing or not changing. The learning rates

we ultimately used ranged from 1e-5 to 5e-7. For training the nuts data set, our initial weights were the

pre-trained weights obtained from [27]. We hoped that by starting with this initialization, we would get

15

Figure 8: K-means results visualized for finding anchor box priors.

closer to the optimal weights for the nuts after training. For training the COCO data set, we used Xavier

initialization for our weights.

We did all of our training on the Discovery Cluster. We tried a few different hardware configurations

during training while learning how best to use Discovery. Initially, we used the default GPU node which

gave us 128 GB of RAM. This severely limited our batch size. Ultimately, we settled on a k80 GPU node

with 500 GB of RAM which allowed for a batch size of 16 and completed roughly 30-50 epochs per hour.

Since the maximum consecutive time we were authorized to run a discovery GPU node was eight hours,

we could not complete our desired number training epochs in a single session. In order to get around this

limitation, we used PyTorch’s checkpointing system to save the model parameters and epoch number every

five batches. That way, after our time ran out, we could restart close to where we left off.

We trained the “Subset of Reduced COCO” data set for 1000 epochs and the nuts data set for 1500

epochs.

3.3 Evaluation Strategy

One statistic we collected was the frames per second we could achieve while doing inference. In the Results

Section we compare this to what the YOLO papers reported.

The true metrics we used to characterize the performance of our model are the standard 12 metrics used

to evaluate the performance of an object detection model on COCO [6]. These metrics include different

breakdowns of mean average precision and mean average recall. A list of the metrics can be seen in Figure

9 and an explanation of them is below following the descriptions in [10, 9, 2, 26]. Note the AP and AR

metrics shown in Figure 9 are averaged over all categories so a more accurate description of these metrics is

“mean average precision” (mAP) and “mean average recall” (mAR). Also, it should be noted that the area

numbers used to determine the small, medium, and large scales in Figure 9 are measured as the number of

pixels in the segmentation mask.

16

Figure 9: The 12 metrics used in the COCO competition to evaluate the performance of an object detector

on the data set, taken from [6].

Figure 10: A visual description of Intersection over Union (IoU) taken from [26].

Before going further into the description of these metrics, it is helpful to go over a few terms first. The

first is a confidence score. A confidence score is the probability that the anchor box in question contains an

object of interest. Second is Intersection over Union (IoU). Given a ground truth bounding box (Bgt) and a

predicted bounding box (Bp), the IoU measures the overlap between the two by calculating the area of the

intersection of the two boxes divided by the union of the two boxes:

IoU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(2)

A visualization of IoU can be seen in Figure 10. To determine whether there should be a prediction

made, first the IoU is calculated and then a threshold is set so that if the IoU value is above this threshold

it is considered a positive prediction and below which there is not considered to be a prediction.

Now we can define a few more terms. If an object classification is correctly made it is a true positive

(TP). If there is no prediction for an object and there is also no ground truth object it is a true negative

17

(TN). If there is a ground truth for an object, but one was not predicted it is a false negative (FN) and if

there is a prediction for an object when in fact there was no ground truth for an object it is a false positive

(FP). With these definitions we can now describe the metrics precision and recall:

precision =
TP

TP + FP
=

true object detection

all detected boxes
(3)

recall =
TP

TP + FN
=

true object detection

all ground truth boxes
(4)

It can be difficult to create a model that has both high precision and recall and thus there is often a trade-off

between the two metrics. One metric that is a single number that captures both precision and recall is called

the Average Precision (AP). Average Precision is the area under the precision recall curve as evaluated over

a set of 11 spaced recall levels:

AP =
1

11

∑

r∈(0,0.1,...,1)

pinterp(r) (5)

where pinterp(r) is the maximum precision that had been measured for a corresponding recall that is larger

than r:

pinterp(r) = maxr̂:r̂≥rp(r) (6)

To calculate the mean average precision we simply follow the following formula:

mAP =
1

#classes

∑

c∈classes

AP [c] (7)

The above equation is fixed for using a specific IoU threshold to determine what counts as a positive

prediction. Many of the COCO metrics described above average the mAP metric over IoU threshold’s

ranging from 0.50 to 0.95 in 0.05 increments giving the following equation:

mAP IoU=0.5:0.05:0.95 =
mAP0.50 +mAP0.55 + . . .+mAP0.95

10
(8)

Equation 8 describes AP small when applied to small objects, APmedium when applied to medium objects,

and AP large when applied to large objects, and simply mAP when considering all sized objects. The size

category is determined based on the area of pixels in the segmentation annotation of the object instance.

Equation 7 applies to AP IoU=0.50 when the IoU threshold is set to 0.50 and AP IoU=0.75 when the IoU

threshold is set to 0.75.

The other metrics in Figure 9 are related to the mean Average Recall (mAR). This is broken up by object

size as well as by the number of detections per image. Average recall is the recall over all IoU thresholds in

the range [0.5, 1]. It can be calculated as:

AR = 2

∫ 1

0.5

recall(x)dx (9)

where x is the IoU and recall(x) is the corresponding recall. The above equation can be used to calculate

the per-class AR. To determine the mean Average Recall that is described in Figure 9 you can use the

following equation:

mAR =
1

#classes

∑

c∈classes

AR[c] (10)

Statistics of model performance on the majority of the above metrics are presented in [28, 29, 3], thus

allowing us to directly compare our results to those of the original papers. Specifically, we compare the

18

Figure 11: Augmentation results when applying common augmentation techniques (such as geometric and

photometric distortions) to our training data.

AP , AP IoU=0.50, AP IoU=0.75, AP small, APmedium, and AP large results to the YOLO v2 and v3 papers, as

well as a handful of other models (including Faster R-CNN with FPN, Faster R-CNN with TDM, DSSD513,

and RetinaNet). In following the standard set by the COCO competition, we treat the mAP (which is

averaged across all 10 IoU thresholds and all categories) as the most important metric when considering our

performance.

4 Results

This section presents our augmentation results, results on the COCO test set using both pre-trained weights

and weights we obtained by training ourselves, as well as results on the nuts data set. The majority of the

details regarding the algorithms used, set-up of our experiments, and our evaluation metrics are discussed

in Section 3. Anything omitted from that section is detailed below.

4.1 Augmentation Results

Figures 11 - 13 showcase some of the augmentation results we achieved. Figure 11 has results from the

augmentation pipeline that performed augmentation techniques that were standard in industry such as

random cropping, horizontal flipping, etc. In the left image of the figure, random cropping and rescaling

have been applied. In the right image, a horizontal flip and color channel changing was applied. Figure 12

shows three examples of outputs of when the cutmix technique was applied to our data and Figure 13 shows

examples when mosaic was used.

It is unclear whether such augmentations would be beneficial or harmful to our results as we were unable

to successfully train on any data set (as is discussed in later sections). On the one hand, augmentations

should help in obtaining a better model because more data is typically good for deep learning models. Also,

doing such augmentations is now standard practice in the deep learning field. However, it is possible that the

cutmix and mosaic techniques result in objects being too much out of context or view in the new image; this

is more of a concern with mosaic than cutmix since it is four images being combined. An example of such a

19

Figure 12: Augmentation results when applying the cutmix technique to our training data.

Figure 13: Augmentation results when applying the mosaic technique to our training data.

20

case is the person in the top left square of the right-most image in Figure 13. Half of the human has been

obscured during the cropping process making it difficult to distinguish the person. The same is true for the

people in that figure in the bottom left-hand corner. As a result, training a model on such instances may in

fact be harmful. The results from a model successfully trained on the augmented data set is needed to draw

further conclusions and determine whether the cutmix and mosaic algorithms we created need adjustment.

4.2 Nuts Results

We trained on the fruit nuts data set for a total of 1500 epochs. The training loss was logged every epoch

and can be seen in Figure 14. For epochs 1-1000, we used a learning rate of 1e-6 (the orange line in the

graph). We noticed that the loss curve was flattening out so we decided to increase the learning rate to

1e-5 for epochs 1000-1500 (the blue line in the graph). Our model was hard-coded to predict 80 classes,

even though for this particular data set there were only three classes. As a result, we filtered the prediction

output to only correspond with the class indices that matched our truth labels during training (0, 1, and 2).

The Average Precision and Average Recall results for the model we trained on this data set (after the

predictions were filtered) can be seen in Figure 15. The -1 values in the table for APS and ARS indicate

that there were no ground truth objects that fit these settings, i.e. there were no ground truth annotations

for objects with areas smaller than 322 square pixels. As can be seen in the figure, every category except

those two values that were -1 had a value of zero. This indicates that we did not have a single true positive

detection.

Visualization of detections on images in the data set (the same images we trained on because there was

no test set available) can be seen in Figure 16. The images pictured in the figure were the four out of the six

images that had any detections after filtering by class. The two other images with detections erroneously

classified parts of the textured background in the image as one of the fruit nuts. The remaining 11 images

had no detections from class indices that matched the ground truth labels indicating that there were many

false negatives.

The top left picture in Figure 16 shows one detection that not only has the wrong label, but also has the

wrong bounding box (as the gold items are the only objects in the data set that were not annotated because

they are not a type of fruit nut). The remaining detections in the other images in this figure had relatively

good bounding boxes, but the class labels were wrong. In the two pictures on the right, a fig was identified

as a date and in the picture in the lower left-hand corner, a date was identified as a hazelnut. Interestingly

enough, the model identified the gold objects in the top left corner and the date in the bottom left as both

belonging to the class hazelnut even though they look nothing alike.

Figure 17 shows predictions made by the model when we do not restrict the class label index to be one

of the labels in the ground truth (0, 1, 2). In this case, there are many more object detections made. The

numbers in the top left corner of each bounding box represent the predicted class label index. These indices

could not be converted to a real label since our training set truth labels only had indices 0, 1, and 2. Some

of the bounding boxes are relatively good, but others, such as in the image to the right, take up almost the

entire frame or identify one of the golden items that it should not have. The fact that at least some correct

bounding boxes were found, but had invalid class index labels, further suggests that the model was unable

to learn the different classifications of objects it identified. More evidence of this is in the picture to the left

in which some objects were identified multiple times, but with different class labels as can be seen by the

overlapping bounding boxes.

21

Figure 14: The training loss as epochs elapsed when we trained on the fruit nuts data set. The two different

colors represent different tensorboard records. The orange color was when we first started logging. The blue

color is the second time we started training (because we were not able to finish training in the time Discovery

allows).

Figure 15: Average Precison and Average Recall results from a model we trained on the fruit nuts data set.

22

Figure 16: Visualization of bounding box detections on the nuts data set from the model we trained after

classes have been filtered to range from classification indices 0-2 (the only three indices that were in our

truth labels).

23

Figure 17: Visualization of bounding box detections on the nuts data set from the model we trained when

there is no restrictions on class label indices. The numbers in the top left corner of each bounding box

represent the predicted class label index.

4.3 Results Using Pre-trained Weights

The pre-trained weights we used were taken from the author of YOLO v3’s website [27]. They were trained

using the author’s own Darknet neural network framework on the COCO train dataset, using multi-scale

training, data augmentation and batch normalization [29]. Further details about the pre-trained weights are

not provided in either the paper [29] or on the author’s website [27]. We loaded these weights into our model

and then performed inference using the model.

The results of how our model performed when using pre-trained weights can be seen in Figure 18 and

a comparison with other models can be seen in Table 6. Our model underperformed both YOLO v3 and

all other object detectors for which we have data, on all metrics except for AP75 and APM where we

outperformed YOLO v2 by just 2.5% on each, and APS , where we outperformed YOLO v2 by 4%. In

fact, overall, our model performs closest to YOLO v2, only differing within a range of 1.3%− 8.7% and we

approach the APS of SSD513 by 1.2%. We also see differences between metrics similar to other models. For

example, our AP50 is 15% higher than our AP , whereas there is an average 21.2% difference between AP

and AP50 across the other models. The relative ordering of the precision’s magnitudes, from greatest to

least of AP50 > APL > APM > AP75 > AP > APS , which is the same across all the different models, is

also matched by our model.

On a category by category basis, we can see from Table 7 that the metrics for the dog class consistently

outperform all other classes except for the person class which does slightly better in APL, ARM and ARL.

The lowest-performing classes are book and table where the book is generally worse, except for a tie in APS

and a slightly better performance on APM , ARS , and ARM .

In performing inference, our model was able to reach a speed of 12.07 fps. This experiment was done by

averaging the inference time across 1,000 images on a p100 GPU with 500 GB of RAM. This is significantly

slower than the 70-125 fps that YOLO v3 reported and the 65-125 fps that YOLO v4 reported. However,

24

Figure 18: Average Precision and Recall results on the COCO data set when using pre-trained weights.

backbone AP AP50 AP75 APS APM APL

Two-stage methods

Faster R-CNN+++ ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN w TDM Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

One-stage method

Yolov2 DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

SSD513 ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

RetinaNet ResNeXt-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2

Yolov3 608 X 608 DarkNet-53 33.0 57.9 34.4 18.3 35.4 41.9

Yolov3 (our model) (our model) 20.3 35.3 21.7 9.0 24.9 31.8

Table 6: Model performance comparison where the evaluation metrics from our model are the results obtained

from using pre-trained weights.

our implementation is comparable in speed to other object detection models such as CenterMask (11-15 fps),

ATSS (11-19 fps), and EfficientDet (11 - 65 fps) [3].

4.4 Results on Subset of COCO

We trained on a 1,000 image subset of the COCO data set (denoted “Subset of Reduced COCO” in Tables

1 - 3) for a total of 1,000 epochs. A plot of this learning curve can be seen in the left-side image of Figure

21. Data points for this curve were logged in Tensorboard every epoch [23]. For epochs 1-116 we used a

learning rate of 1e-5 (the orange line in the picture) before realizing that this was much too high because of

the degree to which the loss was fluctuating, so for epochs 116-375 we used a learning rate of 1e-6 (the dark

blue and red line in the graph). The loss did not decrease much during these epochs so from epoch 375-433

we tried increasing this to 5e-6 (the light blue line in the graph). Again, we found this was too high (because

the loss was greatly fluctuating again) so we dropped it down to 1e-6 (epochs 433 - 615 represented by the

magenta color in the graph) and finally down again to 5e-7 (epochs 615 - 1000 represented by the green

25

Figure 19: Visualization of predictions from a YOLO v3 model. The first row are detections obtained using

pre-trained weights and the bottom row are the same images but with detections from the model we trained.

Both detection outputs have been restricted to only consider the 10 categories we specified in our reduced

data set.

Category AP AP50 AP75 APS APM APL AR ARS ARM ARL

Book 0.016 0.038 0.011 0.010 0.047 0.037 0.025 0.013 0.079 0.066

Bottle 0.123 0.251 0.096 0.071 0.252 0.351 0.168 0.098 0.329 0.425

Bowl 0.161 0.290 0.162 0.072 0.225 0.239 0.228 0.099 0.296 0.354

Cup 0.169 0.291 0.180 0.081 0.279 0.424 0.217 0.109 0.343 0.506

Dog 0.415 0.653 0.471 0.268 0.397 0.468 0.487 0.289 0.437 0.566

Fork 0.101 0.241 0.090 0.053 0.199 0.129 0.127 0.049 0.251 0.214

Laptop 0.317 0.504 0.368 0.114 0.332 0.392 0.361 0.118 0.356 0.458

Person 0.279 0.516 0.276 0.123 0.369 0.505 0.336 0.153 0.440 0.604

Table 0.120 0.218 0.119 0.010 0.045 0.201 0.168 0.011 0.049 0.291

TV 0.330 0.524 0.394 0.100 0.340 0.432 0.383 0.100 0.384 0.500

Table 7: Average Precision and Average Recall per category when using pre-trained weights with our model.

26

Figure 20: Average Precision and Average Recall results for the model we trained ourselves and evaluated

on the COCO data set.

and gray lines in the graph). Every 20 epochs we also logged the validation/test loss which can be seen in

the right-side image of Figure 21. The lowest loss we achieved on the training set was approximately 9,120

which occurred around epoch 200 and for the test set the lowest was around 9,600 (also around epoch 200).

The results of our trained model can be seen in Figure 20. These results are after the predictions have

been filtered from the 80 possible class labels the model can predict down to the 10 that we actually trained

on. Most of the average precision and recall values were zero, implying that the model performs very poorly.

This also indicates that the number of true positives is very low. The only values in the figure that are not

zero are those for ARall for both maximum detections equal to 10 and 100, and for ARM and ARL. The

highest Average Recall percentage was only 0.2%.

Visualization of bounding box predictions using our trained model for our 10 classes can be seen in the

bottom row of Figure 19. It is evident that the pre-trained model (whose predictions are the top row of

Figure 19) performs much better for these four images as it has not only correctly classified objects but also

does not have any false positives. Our trained model, on the other hand, has upwards of 30 overlapping

bounding boxes in each image. It misclassifies every (or nearly every) part of each of the four images which

imply that the model has not been able to learn the true characteristics of each object. As can be seen in

the figure, there is a large number of false positives.

5 Conclusion

5.1 Discussion of Results

5.1.1 Discussion of Pre-trained Weights Performance

It is evident that objects that are smaller in size such as book, bottle, bowl, cup, and fork, are harder to

predict and result in lower precision compared to larger objects like person, TV, laptop, and dog. This

is consistent both with the observation made in YOLO v3 that “in the past YOLO struggled with small

objects” [29], and the data presented in Table 6 in which APS is the lowest-performing metric across all

models for which we have data, whereas APL is the second highest, indicating that detection of smaller

objects is generally a problem in the field of object detection.

For books in particular, which was one of the lowest-performing categories we tested, we think that the

positioning of the object may play a big role. For instance, books can be open or closed in different images

which makes them look different and may explain the result of the model having trouble identifying them.

27

Figure 21: The training loss (left) and validation loss (right) as epochs progressed when we trained on the

subset of the COCO data set. The different colors indicate different runs of the training program. This was

necessary when we manually changed the learning rate or when we maxed out on time for Discovery.

We also noticed that in many of the COCO images that the pre-trained weights were trained on, the books

were in the background and hard for even a human to recognize without taking context into consideration.

Additionally, there were many images of books on bookshelves in which only a handful of the books had

annotations. Not having accurate labels likely impacted the training of the model on this category and thus

impacted the weights we loaded.

Overall, dog is the best performing category, possibly because of how large and distinctive they usually

are. Another reason that it may have been easier for our model to detect dogs is because we do not have

any other animal or category that closely resembles a dog in our data set. Despite these factors, it is still

somewhat of a surprise given that the dog class has some of the fewest images and annotations of the classes

in the COCO data set.

While the person class had the greatest number of images and annotations, it lagged behind the dog

class in almost all metrics except for APL, ARM and ARL. One possible explanation for this, as with some

other classes, is the natural variety that exists within the class. We may expect great diversity in the types

of clothing that people are wearing, the environments they are surrounded by, and the activities which they

are taking part in. However, the rest of our results seem consistent with the fact that person had the most

annotations in the training set because although it did not always outperform dog, it was still one of the

better performing categories.

A surprise was the relatively low performance on the dining table class. Given the generally large size

of dining tables and the number of images and annotations of them in the COCO data set, we might have

expected a higher average precision. A possible reason for this low precision is that dining tables in the

images are defined very broadly with a high variety of shapes and sizes. For example, some were rectangular

and large and others were small and round. In addition, in many images tables are covered with several

other objects, which may have made them harder to detect.

Overall, our general underperformance is probably what surprised us the most, both since we located

and used the original YOLO v3 weights file, and because visual inspection of the detections made by our

model using the pre-trained weights looked accurate (see Figure 19). Since we would expect similar results

to those obtained by YOLO v3 based on these facts, we are not entirely sure what explains our model’s

28

relatively poor performance, and will need to further investigate to determine if there is a bug somewhere,

perhaps in our evaluation pipeline or somewhere deep in the network architecture.

One thing that did make sense to us was the frame rate we achieved. While we were hoping for something

higher than 12.07 fps, it makes sense that we are considerably slower than what YOLO v3 reported. This is

because all of our code was done in Python, which is a very slow language, and our code was not optimized.

YOLO v3 on the other hand was implemented in C. If we wanted to get similar results in the future, we

would have to probably use a combination of Python and C++ or use C like YOLO v3.

5.1.2 Discussion of Models Trained by Us

As can be seen in Sections 4.2 and 4.4, the models we trained performed extremely poorly. Our model was

unable to learn anything useful and had very few true positives and for at least the COCO data set, many

false positives.

For the nuts data set, only a handful of detections were made when the class label indices were filtered,

some of which were false positives and others that had decent bounding boxes but wrong class labels. When

we lifted the restrictions on class labels, we got more detections, but all of the class labels are wrong. An

indicator that something was wrong is the learning curve (Figure 14). The loss even after 1500 epochs is

extremely high– around 1200. One possible reason is that we used too low of a learning rate for the first

1000 epochs.

For the COCO data set, we had large numbers of false positives and many overlapping bounding boxes.

Like the nuts data set, it can be seen in the learning curve (Figure 21) that we had problems with the

learning rate. The loss either fluctuates greatly or steadily starts increasing at different sections. This is

definitely one area that negatively impacted our results. Like the training on the nuts data set, we had very

high losses even during later epochs.

The large losses we had while training both models, as well as the poor performance of the models,

indicate that there is something wrong with our set-up. We are not sure if the error pertains to the model,

the loss function, the training loop, or possibly some combination. More discussion about these possible

factors can be found in the following section.

There are a few obvious things we noticed that went wrong though. For one, training (especially for the

nut data set) was most likely negatively impacted by the fact that we allowed our model to make 80 different

class predictions, but both of our data sets had fewer than 80 classes. This may be one reason to explain

why all (or almost all) of the class labels were incorrect. Additionally, the excessive number of overlapping

bounding boxes in the bottom row of Figure 19 indicates that our non-maximum suppression (NMS) may

not be working. It is hard to tell for sure because our NMS function only takes into account overlapping

bounding boxes of the same label rather than different labels. It’s difficult to see by simply analyzing the

pictures if any of the overlapping bounding boxes are of the same label. The last observation brings us to

the other area we went wrong– having overlapping bounding boxes of different labels (such as the left image

in Figure 16). In the future, we would detect overlapping bounding boxes of different labels and only keep

the one that had the highest confidence score. It’s possible the latter two problems would not happen if the

model had been successfully trained.

One thing that we are unable to explain is why the training we did on the COCO data set resulted in

over 20 bounding boxes per image (at least for the images we visualized results on), but the nuts data set

did not have this problem. Many of the bounding boxes for the nuts data set were wrong, but there weren’t

nearly as many false positives as in the model we trained on COCO. This seems weird because the code and

29

training process was identical for these two models with the exception of the learning rates used. A potential

reason for this is that the nuts data set contains fewer classes with just three categories, compared to the

ten categories in our reduced COCO data set.

5.2 Possible Reasons for Inability to Train

We had a lot of issues training and were not able to achieve low losses even after many epochs had elapsed.

Initially, this was due to our computation graph getting disconnected and because of errors in our loss function

which we had to spend a great deal of time debugging. We noticed there was something wrong with our

model because backpropogation was not working. Even after having the optimizer take a step, the gradients

were not changing and as a result the loss never changed. To identify the problem, we utilized the library

called pytorchviz which renders a diagram of the computation graph [37]. We found that the computation

graph was getting disconnected in the very last layer. After some troubleshooting, we discovered that we

had written the detection layer of the architecture as an additional utility function when it actually needed

to be the forward function of an nn.Module subclass. The visualization produced by pytorchviz, once we

had fixed this error, is included in the submission zip file as supplementary material, titled ‘pytorchviz.pdf’.

In regards to our loss function, there were several things we checked. One thing we checked was whether

our targets were in the correct format. This was necessary because the bounding boxes in the JSON file that

had our truth labels had a different format than the predictions tensor our model outputted. We checked

this by saving the truth tensor generated in our loss function and then using it to draw bounding boxes on

the original image. We also were unsure whether the mean square error calculations using Pytorch’s built-in

MSE class were working as expected so we recorded all of the truth and predicted bounding boxes for one

image and did the calculations by hand to make sure they matched. Lastly, we stepped through our loss

function with a debugger in an IDE and made sure that everything was behaving as expected.

While debugging, we did find a few notable mistakes. The first mistake we made was due to a miscom-

munication between teammates. The person who wrote the loss function was different than the one who

wrote the model architecture and had an incomplete understanding of the format of the predictions tensor.

Initially, the loss function expected the predictions tensor to have bounding box (x, y) coordinates relative

to their offset position in the grid cell. However, the way the model was constructed, the predictions give

the absolute (x, y) coordinates in the image. We were alerted to another mistake when we realized that

the magnitude of the different components of MSE losses were several orders of magnitude apart. After re-

reading the YOLO v1 paper, we realized we were not normalizing the bounding box coordinates and width

and heights. This resulted in extremely high losses (in the millions) because the bounding box errors were so

large in magnitude and then were being multiplied by 5 in addition to that because that’s how the original

paper presented it. Because the bounding box losses were so high, backpropogation seemed to focus more on

these errors than any of the other loss components in Figure 7. As a result, our initial trials at training had

especially bad results in the classification aspect of the detection. Once we normalized the bounding box

truth and prediction tensors to lie between 0 and 1, our losses were then only in the thousands and we had

a little more success in training, especially in regards to the resulting classifications. While we still couldn’t

classify accurately, we at least had more classifications of the valid class options. Another thing we changed

after adding normalization was to make sure that when we normalized the bounding boxes, none of those

computations impacted the gradients during backpropogation. We did this by enclosing the normalization

code in “torch.no grad()”. After we made these changes, we did a sanity check by using our loss function to

compute the loss between good predictions on one image with a model loaded with pre-trained weights and

30

the true labels and got a loss of 24. Since the loss was low and seemed reasonable, we believe that our loss

function is probably correct.

However, even after fixing these mistakes, we were unable to get very low losses during training indicating

that there are probably other issues we have not identified. One issue we had was picking hyper-parameters

such as learning rate. We were not able to find good values for this. We started off with what the YOLO v2

paper suggested, which ranged from 10−2 to 10−3 to start and then decreased as time went on, but we found

this was much too high. When we plotted the loss curves, the curve was erratic and went up and down by

large amounts. We kept slowly lowering it until we saw that it was consistently going down. However, as time

went on, we found that the loss leveled out and was not decreasing so in between epochs we again played

with changing the learning rate. We waited several epochs, looked at the curve again, and then decided

whether to continue adjusting the rate. In the future, we would have to come up with a better system than

this and perhaps write a custom learning rate scheduler to meet our needs and also add gradient clipping.

Another issue we found, which has been mentioned previously, was that because of the way our model

was set up, it was expecting there to be 80 classes when for our data sets we only had 3 or 10 classes. This

gave it the opportunity to make wrong predictions because it could predict classes that did not exist in our

data set. It is very possible that this negatively impacted training.

Other than adjusting the learning rate and fixing the model to be more flexible with the number of

classes it can predict, it’s not clear where else we went wrong. The model performed decently with pre-

trained weights indicating that the model architecture is likely correct, or at least capable of functioning

well. It’s still possible there is a bug in the architecture we did not find though since it did perform so much

worse than what the YOLO v3 paper reported. The loss is low when evaluated on images with pre-trained

weights indicating that the loss function may be correct. The structure of the training loop is nearly identical

to tutorials on Pytorch’s website so there is little room for error there. Much more investigation is needed

to determine what exactly is wrong with our set up.

5.3 Other Challenges We Faced and Things that Went Wrong

One of the first major setbacks we encountered was that after we had written the majority of our code in

Jupyter notebooks on our group’s Google Colab we discovered that the upload rate to transfer our data to

the Google drive was prohibitively slow. While we experimented with potential workarounds, we also tried

training our model on a smaller, 18 image dataset, only to discover that our notebook would quickly run out

of RAM. Due to these problems, it became clear that we would need to transfer to a Discovery cluster.

To do this we first needed to convert our Jupyter notebook files into stand-alone python scripts that could

be run from a command-line interface. We then used SCP to transfer our data to Discovery and cloned our

Gitub repo to access our Python scripts.

Since Discovery is accessed via ssh through a terminal it required some experimentation to figure out how

to correctly use it. We initially attempted to use a Tmux session to run our code which we would detach from

to leave our job running while offline. However, this technique turned out to be infeasible when combined

with requesting a node with the compute resources to run our code. We also initially had some trouble

figuring out how to utilize the CUDA GPUs on Discovery to speed up our training so our first attempts at

training were extremely slow. PyTorch requires that every time a new tensor is instantiated it is loaded onto

the GPU using a tensor.cuda() method. However, for the code to also work on a regular CPU, these method

calls have to put inside torch.cuda.is available() conditionals. After some troubleshooting, we located all

such instances and immediately noticed a huge speed improvement.

31

Although the speedup was significant, it was not enough to complete sufficient training epochs within

our eight-hour time limit. As mentioned earlier, our solution was to use PyTorch’s checkpointing system to

save the current state every five batches. To make the best use of our time, team members took ‘shifts’ with

some members starting training late at night and letting another member restart training first thing in the

morning.

There were two other main challenges we faced. The first was the relative inexperience of team members

to machine learning and deep learning. This course was the first machine learning experience all team

members had and none of us had used Pytorch previously. We learned a lot while troubleshooting at office

hours, but we really lacked a lot of deep learning knowledge that was needed to do this project. The second

challenge was the time constraint. We found that when combined with our other coursework, this project

was too much to complete in six weeks.

5.4 Future Work

If we had more time, there are several things we would do to improve this project. The first would be to

make the model more flexible. We would like to change the model so that you could specify any number of

classes and not have to use the number 80.

The biggest thing we would like to fix is our ability to train. We got decent results with the pre-trained

weights, but very poor results when we attempted to use our loss function to train ourselves. Although as

mentioned previously, the loss function and architecture may in fact be correct, there is something wrong

with our set-up that needs further debugging since we were never able to attain low losses even after many

epochs. Part of this may be solved by better adjusting hyperparameters like learning rate, but it not apparent

if that alone would fix it. It would be very satisfying to fix this and be able to play more with different

hyperparameters and settings to see if we could improve our results.

Once the training loop/loss function was fixed we would like to continue with our original goal of training

on the augmented data set we created. It would be interesting to do this and then compare the results

we would be able to get from using pre-trained weights, training on the subset of COCO we created, and

training on the augmented data set and see which performs best. We could also play with things while

doing this like changing the anchor box priors to those we found using k-means versus using the priors

the paper used. Based on these results, if we find that the augmented data performed worse, then this may

indicate that there is additional future work in modifying the augmentation pipeline to overcome some of the

problems discussed in Section 4.1. One modification we can think of already for the augmentation pipeline

is transferring the code from Python to C++ (a language that also has an OpenCV library) in order to

increase speed. We could also transfer some of our model Pytorch code to C++ to allow for faster inference

speeds.

Lastly, the other obvious area of improvement that we could make is to add in features of YOLO v4

to our project (which currently is mainly based on YOLO v3). The only current feature of YOLO v4 that

we have is some of the data augmentation techniques such as cutmix and mosaic. YOLO v4 uses a slightly

different backbone in their architecture than what we used, called CSPDarknet53, and also adds DropBlock

regularization, class label smoothing, and different activations (such as Mish activation), among other things.

Perhaps the biggest change between YOLO v3 and v4 that we could tackle is the new loss function: CIoU-

loss. CIoU-loss (Complete Intersection over Union) is a variant of IOU (Intersection of Union) loss that

considers overlapping areas, aspect ratios, as well as the distance between center points, which helps in

‘normalizing’ the loss across different scales.

32

Although there is still future work to be done, we are happy with the amount we accomplished in six

weeks, especially given the advanced nature of object detection and the relative inexperience of the team.

References

[1] Albumentations Documentation. (Accessed on 12/15/2020). doi: {http://albumentations.ai/docs/

}.

[2] An Introduction to Evaluation Metrics for Object Detection. (Accessed on 10/18/2020). doi: {https:

//blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-

object-detection/}.

[3] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal Speed and

Accuracy of Object Detection”. In: arXiv preprint arXiv:2004.10934 (2020).

[4] Rung-Ching Chen et al. “Automatic License Plate Recognition via sliding-window darknet-YOLO deep

learning”. In: Image and Vision Computing 87 (2019), pp. 47–56.

[5] COCO - Common Objects in Context Download. (Accessed on 10/17/2020). doi: {https://cocodataset.

org/#download}.

[6] COCO - Common Objects in Context Metrics. (Accessed on 10/18/2020). doi: {https://cocodataset.

org/#detection-eval}.

[7] cocodataset/cocoapi: COCO API - Dataset @ http://cocodataset.org/. (Accessed on 10/17/2020). doi:

{https://github.com/cocodataset/cocoapi}.

[8] Terrance DeVries and Graham W Taylor. “Improved regularization of convolutional neural networks

with cutout”. In: arXiv preprint arXiv:1708.04552 (2017).

[9] Evaluating Object Detection Models: Guide to Performance Metrics — Manal El Aidouni. (Accessed on

10/18/2020). doi: {https://manalelaidouni.github.io/manalelaidouni.github.io/Evaluating-

Object-Detection-Models-Guide-to-Performance-Metrics.html}.

[10] Evaluation metrics for object detection and segmentation: mAP. (Accessed on 10/18/2020). doi: {https:

//kharshit.github.io/blog/2019/09/20/evaluation-metrics-for-object-detection-and-

segmentation}.

[11] Fruits Nuts Segmentation Data Set. (Accessed on 12/14/2020). doi: {https://github.com/Tony607/

mmdetection_instance_segmentation_demo}.

[12] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference on computer vision.

2015, pp. 1440–1448.

[13] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and semantic segmentation”.

In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014, pp. 580–587.

[14] Kaiming He et al. “Mask RCNN. arXiv e-prints, Article”. In: arXiv preprint arXiv:1703.06870 (2017).

[15] Miao Kang et al. “Contextual region-based convolutional neural network with multilayer fusion for

SAR ship detection”. In: Remote Sensing 9.8 (2017), p. 860.

33

[16] Ayoosh Kathuria. How to implement a YOLO (v3) object detector from scratch in PyTorch. (Accessed

on 12/12/2020). doi: {https://blog.paperspace.com/how- to- implement- a- yolo- object-

detector-in-pytorch/}.

[17] Ayoosh Kathuria.What’s new in YOLO v3? (Accessed on 12/12/2020). doi: {https://towardsdatascience.

com/yolo-v3-object-detection-53fb7d3bfe6b}.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep convolu-

tional neural networks”. In: Communications of the ACM 60.6 (2017), pp. 84–90.

[19] Wenbo Lan et al. “Pedestrian detection based on yolo network model”. In: 2018 IEEE international

conference on mechatronics and automation (ICMA). IEEE. 2018, pp. 1547–1551.

[20] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in network”. In: arXiv preprint arXiv:1312.4400

(2013).

[21] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European conference on computer

vision. Springer. 2014, pp. 740–755.

[22] Li Liu et al. “Deep learning for generic object detection: A survey”. In: International journal of com-

puter vision 128.2 (2020), pp. 261–318.

[23] Martın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software

available from tensorflow.org. 2015. url: http://tensorflow.org/.

[24] Mohammed A Al-Masni et al. “Simultaneous detection and classification of breast masses in digital

mammograms via a deep learning YOLO-based CAD system”. In: Computer methods and programs in

biomedicine 157 (2018), pp. 85–94.

[25] Aladdin Persson. Pytorch YOLO From Scratch. (Accessed on 12/12/2020). doi: {https://www.

youtube.com/watch?v=n9_XyCGr-MI}.

[26] Sovit Ranjan Rath. Evaluation Metrics for Object Detection. (Accessed on 10/18/2020). doi: {https:

//debuggercafe.com/evaluation-metrics-for-object-detection/}.

[27] Joseph Redmon. YOLO: Real-Time Object Detection. (Accessed on 12/14/2020). doi: {https://

pjreddie.com/darknet/yolo/}.

[28] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2017, pp. 7263–7271.

[29] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In: arXiv preprint arXiv:1804.02767

(2018).

[30] Joseph Redmon et al. “You only look once: Unified, real-time object detection”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2016, pp. 779–788.

[31] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with region proposal networks”.

In: IEEE transactions on pattern analysis and machine intelligence 39.6 (2016), pp. 1137–1149.

[32] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In: International journal

of computer vision 115.3 (2015), pp. 211–252.

[33] Pierre Sermanet et al. “Overfeat: Integrated recognition, localization and detection using convolutional

networks”. In: arXiv preprint arXiv:1312.6229 (2013).

34

[34] Connor Shorten and Taghi M Khoshgoftaar. “A survey on image data augmentation for deep learning”.

In: Journal of Big Data 6.1 (2019), p. 60.

[35] Cheng Wei. How to train Detectron2 with Custom COCO Datasets. (Accessed on 12/15/2020). doi:

{https://www.dlology.com/blog/how-to-train-detectron2-with-custom-coco-datasets/}.

[36] Sangdoo Yun et al. “Cutmix: Regularization strategy to train strong classifiers with localizable fea-

tures”. In: Proceedings of the IEEE International Conference on Computer Vision. 2019, pp. 6023–

6032.

[37] Sergey Zagoruyko. Pytorchviz: A small package to create vizualizations of PyTorch execution graphs.

(Accessed on 12/15/2020). doi: {https://github.com/szagoruyko/pytorchviz}.

35

